The latest programmable solar array simulator power supply 62000H-S Series released by Chroma provide simulation of Voc (open circuit voltage) up to 1800V and Isc (short circuit current) up to 30A. The 62000H-S provides an industry leading power density in a small 3U high package. The solar array simulator is highly stable and has a fast transient response design, which are both advantages to MPPT performance evaluation on PV inverter devices.

The 62000H-S Series has many unique advantages including high speed & precision digitizing measurement circuits with a 100kHz A/D, 25kHz D/A controlled I-V curve and a digital filter mechanism. It can simulate an I-V curve accurately and response the mains ripple effect from the PV inverter. In addition, the built-in ENS0530/Sandia SAS I-V model in the standalone unit can easily program the Voc, Isc, Vmp, and Imp parameters for I-V curve simulation, without a PC controller.

The real solar array is influenced by various weather conditions such as irradiation, temperature, rain and shade by trees or clouds, which will affect the I-V curve output. The 62000H-S Series is capable of storing up to 100 I-V curves into the simulator memory, with a programmed time interval range of 1-15,000 seconds. It can simulate the I-V curve from the early morning to nightfall for PV inverter testing or dynamic I-V curve transient testing.

When high power solar array simulation is required, it is common to connect two or more power modules in parallel. The 62000H-S Series with a current range up to 30A and a voltage range up to 1800V offers a high power density envelope maximum of 18kW in a 3U package. It can easily parallel up to 16 units in a Master/Slave configuration to provide 288kW with current sharing and synchronized control signals for commercial utility PV inverter (10kW~100kW) testing.

The 62000H-S Series supplies have a smart Master/Slave control mode that makes the parallel operation fast and simple. In this mode, the master scales values and downloads data to slave units so that the programming is as simple as using a standalone unit.

The 62000H-S Series DC power supplies are very easy to operate from the front panel keypad or from the remote controller via Ethernet/USB/RS232/RS485/GPIB/APG. Its compact size (3U) makes it ideal for both benchtop and standard racking.
SOLAR ARRAY I-V CURVE SIMULATION POWER SUPPLY

The 62000H-S Series has a built-in EN50530 and Sandia’s SAS model that can easily program the Voc, Isc, Vmp, Imp parameters to simulate different solar cell materials I-V characteristic outputs with fast response time. Moreover, the TABLE mode is capable of saving a 128~4096 point array of user programmed voltages and currents via a remote interface. It can easily create a shadowed I-V curve and the I-V PROGRAM mode can save up to 100 I-V curves and dwell time intervals (1-15,000s) in memory. These advantages provide steady repetitive control conditions required for PV Inverter design as well as for verification testing. The solar array simulator is ideal for the following tests:

- Design and verify the maximum power tracking circuit and algorithm of PV inverter
- Verify the high/low limit of operating input voltage allowed for PV inverter
- Verify the high/low limit of operating input voltage allowed for the inverter maximum power point
- Verify the static maximum power point tracking efficiency of PV inverter
- Measure and verify the overall efficiency & conversion efficiency of PV inverter *
- Verify the maximum power point tracking performance of the inverter for dynamic curves, (EN50530, Sandia, CGC/GF004, CGC/GF035, NB/T 32004 standard)
- Verify the maximum power point tracking performance of the inverter under different time period conditions spanning from morning to nightfall
- Verify the maximum power point tracking mechanism of the inverter for I-V curve when the solar array is shaded by clouds or trees
- Simulate the I-V curve under the actual environmental temperatures in a burn-in room for inverter burn-in test
*Requires an extra power meter.

SOLAR ARRAY I-V CURVE SIMULATION SOFT PANEL

The 62000H-S Series includes a graphical user interface software through remote digital interface (USB / GPIB / Ethernet / RS232) control. The user can easily program the I-V curve of the 62000H-S Series as well as the I-V & P-V curves for real-time testing. In addition it will display the MPPT status for PV inverter. Readings and the report function with real-time monitoring using the softpanel are shown left.

SIMULATES DIFFERENT SOLAR CELL MATERIALS I-V CHARACTERISTIC (FILL FACTOR)

The purpose of the PV inverter is to convert the dc voltage (from solar array) to the ac power (utility). The better a PV inverter can adapt to the various irradiation and temperature conditions of sun, the more power that can be fed into the utility grid over time. So, the MPPT performance is a very important factor for PV generation system. The 62000H-S Series is capable of simulating different types of standard crystalline, multi-crystalline and thin-film fill factor* parameters to verify the MPPT tracking algorithm mechanism and efficiency.

*Fill Factor = (Imp*Vmp)/(Isc*Voc)
STATIC MPPT EFFICIENCY TESTING

The 62150H-600S DC power supply with solar array simulation can program the I-V curve through SAS mode and table mode via front panel or softpanel easily and up to 100 I-V curves can be stored in the unit. The user can recall the I-V curve from 62150H-600S afterwards for testing and monitoring the MPPT performance of PV inverter with the real-time tracking feature. The softpanel allows the user to set the duration for static MPPT efficiency testing. Each curve test time should be set between 60s-600s for best MPPT efficiency performance analysis.

\[\eta_{\text{MPPT}} = \frac{1}{P_{\text{mpp}} \cdot T_m} \sum V_{\text{dc}} \cdot I_{\text{dc}} \cdot \Delta T \]

V_{\text{dc}} = \text{Sampled value of the inverter’s input voltage}
I_{\text{dc}} = \text{Sampled value of the inverter’s input current}
T_m = \text{Overall measuring period}
P_{\text{mpp}} = \text{MPPT power provided by the solar array simulator power supply}

DYNAMIC MPPT EFFICIENCY TESTING

The latest test standards EN50530, CGC/GF004 & Sandia have provided a procedure for testing patterns of the dynamic MPPT efficiency of inverters, those standards can accelerate the MPP tracking algorithm mechanism to the optimal for PV inverter manufacturers. The advanced dynamic MPPT test function complies with EN50530, CGC/GF004, CGC/GF035, Sandia test regulations and can be controlled via the graphical softpanel by selecting CGC/GF004, CGC/GF035, Sandia or EN50530 I-V mathematical expressions and test items. This function simulates the irradiation intensity and temperature change of the I-V curve under actual weather variations to test the PV inverter’s dynamic MPPT performance. The GUI will calculate the MPPT performance for analysis after running the test. A test data recording function is integrated into the software where users can edit and control the test parameters to be recorded such as voltage, current, power, watt and MPPT performance along with the sampling interval (1~10,000s) and total time length to facilitate the analysis and validation of PV inverters.

SHADOW I-V CURVE SIMULATION

It has easy-to-use software to simulate the shadowed I-V curve and its dynamic change as the figure shown aside. The user can select the PV module from the database or create individual PV module parameters for storage; and then set the amount of PV string to form a PV Array in series or parallel. Next, the user can set the irradiation, temperature, moving direction and time of dynamic shadowed change for PV module that can simulate the cloud cover change or make shadow I-V curve simulation for other shadows such as under the trees or the buildings. Each I-V curve is formed with maximum 4096 data points of voltage and current.

EVALUATING THE PV INVERTER’S CONVERSION EFFICIENCY *

The photovoltaic I-V curve model with Sandia Lab and EN50530 built-in the softpanel allows the user to input the maximum dc input power (Pmax), I-V Fill Factor, Vmin, Vnom and Vmax desired to test the PV Inverter. Click the maximum power percentage value (5%, 10%, 20%, 25%, 30%, 50%, 75%, 100%) desired directly and the softpanel will produce the tested solar cell I-V curve automatically. Next, download it to the standalone unit to start simulating the I-V curve for PV Inverter to test the conversion efficiency. *Required an extra power meter.
REAL WORLD WEATHER SIMULATION

The real world weather simulation function allows the user to import real conditions of irradiation and temperature profiles of a whole day from excel file to softpanel simulating the irradiation intensity and temperature level from early morning to nightfall. It can also set the interval time resolution to 1s for I-V curve update and enable the user to perform MPPT tracking tests under the simulation of actual weather environments.

AUTO RUN FUNCTION OF STATIC & DYNAMIC MPPT TESTING

In order to easily test the static & dynamic MPPT performance of standard EN50530 & Sandia for PV inverters, the softpanel has an auto run function, which the user only has to set the Vmin, Vnom, Vmax, Pmax, stabilization time & test period parameters and test items of EN50530 and Sandia, then the softpanel can run tests automatically and generate reports after finished.

<table>
<thead>
<tr>
<th>From-to</th>
<th>Delta W/m²</th>
<th>Pmp Value (W)</th>
<th>Vnom (V)</th>
<th>c-Si technology</th>
<th>Waiting time setting (S)</th>
<th>MPPT Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300-1000</td>
<td>700</td>
<td>350.00</td>
<td>2000.00</td>
<td>300</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Slope W/m²</th>
<th>Ramp UP (S)</th>
<th>Dwell time (S)</th>
<th>Ramp DN (S)</th>
<th>Dwell time (S)</th>
<th>Duration (S)</th>
<th>MPPT Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>70</td>
<td>10</td>
<td>70</td>
<td>10</td>
<td>1900</td>
<td>99.89</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>10</td>
<td>50</td>
<td>10</td>
<td>1500</td>
<td>99.90</td>
</tr>
<tr>
<td>10</td>
<td>35</td>
<td>10</td>
<td>35</td>
<td>10</td>
<td>1200</td>
<td>99.87</td>
</tr>
<tr>
<td>10</td>
<td>23</td>
<td>10</td>
<td>23</td>
<td>10</td>
<td>967</td>
<td>99.84</td>
</tr>
<tr>
<td>10</td>
<td>14</td>
<td>10</td>
<td>14</td>
<td>10</td>
<td>780</td>
<td>99.86</td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>10</td>
<td>7</td>
<td>10</td>
<td>640</td>
<td>99.71</td>
</tr>
<tr>
<td>Total</td>
<td>6987 s</td>
<td>01 : 56 : 27 h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MPPT voltage of the simulated I/U characteristic of the PV generator</th>
<th>Simulated I/U characteristic</th>
<th>Pmp Value(W)=1000.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umin = 200.0 c-Si</td>
<td>0.050</td>
<td>99.510</td>
</tr>
<tr>
<td>Unom = 300.0 c-Si</td>
<td>0.100</td>
<td>98.703</td>
</tr>
<tr>
<td>Umax = 400.0 c-Si</td>
<td>0.200</td>
<td>99.589</td>
</tr>
<tr>
<td></td>
<td>0.250</td>
<td>99.728</td>
</tr>
<tr>
<td></td>
<td>0.300</td>
<td>99.533</td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>99.868</td>
</tr>
<tr>
<td></td>
<td>0.750</td>
<td>99.930</td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>99.908</td>
</tr>
</tbody>
</table>

REPORT FUNCTION

The softpanel also provides data recording capabilities, which include voltage, current, power, energy and MPPT efficiency, and the corresponding parameter sampling time (1s~10000s) for recording process. The report can be utilized for R&D design characteristics verification, QA verification and production quality control.

MASTER / SLAVE PARALLEL OPERATION UP TO 288KW

When high power is required, it is common to connect two or more power supplies in parallel. The 62000H-S Series power supplies have a smart master / slave control mode making the parallel operation fast and simple. In this mode, the master scales values and downloads data to slave units with a high speed sync signal process and automatic current sharing control.
CUSTOMIZATION SOLAR ARRAY SIMULATOR UP TO 1500KW

- Connect multiple 150kW solar array simulator in parallel (0~1000V/0~2500A/0~1500kW)
- Simultaneous display of output voltage and current
- Current sharing capability up to 1.5MW
- Standard USB/GPIB/Ethernet interface

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Power Rating</th>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2kW</td>
<td>62020H-150S</td>
<td>Programmable DC Power Supply 150V/40A/2kW with Solar Array Simulation</td>
</tr>
<tr>
<td>5kW</td>
<td>62050H-600S</td>
<td>Programmable DC Power Supply 600V/8.5A/5kW with Solar Array Simulation</td>
</tr>
<tr>
<td>10kW</td>
<td>62100H-600S</td>
<td>Programmable DC Power Supply 600V/17A/10kW with Solar Array Simulation</td>
</tr>
<tr>
<td>15kW</td>
<td>62150H-600S</td>
<td>Programmable DC Power Supply 600V/25A/15kW with Solar Array Simulation</td>
</tr>
<tr>
<td></td>
<td>62150H-1000S</td>
<td>Programmable DC Power Supply 1000V/15A/15kW with Solar Array Simulation</td>
</tr>
<tr>
<td>18kW</td>
<td>62180H-1800S</td>
<td>Programmable DC Power Supply 1800V/30A/18kW with Solar Array Simulation</td>
</tr>
</tbody>
</table>

Options

- A620024 : GPIB Interface for 2kW/5kW/10kW/15kW models (Factory installed)
- A620039 : GPIB Interface for 18kW models
- A620025 : Ethernet Interface for 62000H series (Factory installed)
- A620026 : Rack Mounting kit for 62000H series
- A620027 : Parallel Power Stage 15kW for 62150H-600S
- A620028 : Parallelable Power Stage 15kW for 62150H-1000S
- A620029 : Control and Supervisor Unit for 150kW~1.5MW
- A620030 : 19” Rack Mounting Kit 2U for 62000H-150S
- B620000 : 19” Rack Mounting Kit 2U for 62000H-150S

Note *1 : Call for more information regarding the customized solar array simulator of 150kW~1.5MW.
Note *2 : Call for availability of 200/220Vac and 440/480Vac line voltage.
1. POWER Switch
2. VFD Display
 Display setting, readings and operating status
3. LOCK Key
 Lock all settings
4. OUTPUT Key
 Enable or disable the output
5. CONFIG Key
 Set the system configuration
6. VOLTAGE Key
 Set the output voltage
7. CURRENT Key
 Set the output current
8. PROG Key
 Program the sequence
9. NUMERIC Key
 Set the data
10. ROTARY Key
 Adjust the V&I and set the parameter

11. Analog programming interface
 For analog level to program and monitor output voltage & current
12. RS-232 or RS-485 Interface (alternative)
13. System Bus
 For master/slave parallel and series control
14. USB Interface
15. OUTPUT Terminal
 Connect the output cable to a UUT
16. System Fan
 With fan speed control
17. Current Sharing Terminal
 Connect the cable to slave unit
18. Sense Terminal
 Connect the UUT for voltage compensation
19. GPIB or ETHERNET Interface
 (Option for 2kW/5kW/10kW/15kW models)
20. GPIB Interface (Option for 18kW model)
21. Ethernet Interface (Standard for 18kW model)
22. AC Input Terminal
ELECTRICAL SPECIFICATIONS WITH SOLAR ARRAY SIMULATION

Model Specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>62020H-150S</th>
<th>62050H-600S</th>
<th>62100H-600S</th>
<th>62150H-600S</th>
<th>62150H-1000S</th>
<th>62180H-1800S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Ratings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Voltage</td>
<td>0 ~ 150V</td>
<td>0 ~ 600V</td>
<td>0 ~ 600V</td>
<td>0 ~ 600V</td>
<td>0 ~ 1000V</td>
<td>0 ~ 1800V *5</td>
</tr>
<tr>
<td>Output Current</td>
<td>0 ~ 40A</td>
<td>0 ~ 8.5A</td>
<td>0 ~ 17A</td>
<td>0 ~ 25A</td>
<td>0 ~ 15A</td>
<td>0 ~ 30A</td>
</tr>
<tr>
<td>Output Power</td>
<td>2000W</td>
<td>5000W</td>
<td>10000W</td>
<td>15000W</td>
<td>15000W</td>
<td>18000W</td>
</tr>
<tr>
<td>Line Regulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage</td>
<td>± 0.01% F.S.</td>
<td>± 0.01% F.S.</td>
<td>± 0.05% F.S.</td>
<td>± 0.05% F.S.</td>
<td>± 0.05% F.S.</td>
<td>± 0.05% F.S.</td>
</tr>
<tr>
<td>Current</td>
<td>± 0.05% F.S.</td>
<td>± 0.05% F.S.</td>
<td>± 0.1% F.S.</td>
<td>± 0.2% F.S.</td>
<td>± 0.2% F.S.</td>
<td>± 0.2% F.S.</td>
</tr>
<tr>
<td>Load Regulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage</td>
<td>± 0.05% F.S.</td>
<td>± 0.05% F.S.</td>
<td>± 0.1% F.S.</td>
<td>± 0.2% F.S.</td>
<td>± 0.2% F.S.</td>
<td>± 0.2% F.S.</td>
</tr>
<tr>
<td>Current</td>
<td>± 0.1% F.S.</td>
<td>± 0.1% F.S.</td>
<td>± 0.2% F.S.</td>
<td>± 0.3% F.S.</td>
<td>± 0.3% F.S.</td>
<td>± 0.3% F.S.</td>
</tr>
<tr>
<td>Voltage Measurement</td>
<td>60V / 150V</td>
<td>120V / 600V</td>
<td>120V / 600V</td>
<td>120V / 600V</td>
<td>200V / 1000V</td>
<td>1100V / 1800V</td>
</tr>
<tr>
<td>Range</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accuracy</td>
<td>0.05% + 0.05% F.S.</td>
</tr>
<tr>
<td>Output Noise & Ripple</td>
<td>450 mV</td>
<td>1500 mV</td>
<td>1500 mV</td>
<td>1500 mV</td>
<td>2550 mV</td>
<td>3500 mV</td>
</tr>
<tr>
<td>Voltage Noise (P-P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage Ripple (rms)</td>
<td>65 mV</td>
<td>650 mV</td>
<td>650 mV</td>
<td>650 mV</td>
<td>1950 mV</td>
<td>750 mV</td>
</tr>
<tr>
<td>Current Ripple (rms)</td>
<td>80 mA</td>
<td>150 mA</td>
<td>300 mA</td>
<td>450 mA</td>
<td>270 mA</td>
<td>250 mA</td>
</tr>
<tr>
<td>OVP Adjustment Range</td>
<td>0 ~ 110% programmable from front panel, remote digital inputs.</td>
<td>0 ~ 110% programmable from front panel, remote digital inputs.</td>
<td>0 ~ 110% programmable from front panel, remote digital inputs.</td>
<td>0 ~ 110% programmable from front panel, remote digital inputs.</td>
<td>0 ~ 110% programmable from front panel, remote digital inputs.</td>
<td>0 ~ 110% programmable from front panel, remote digital inputs.</td>
</tr>
<tr>
<td>Range</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accuracy</td>
<td>0.1% + 0.1% F.S.</td>
</tr>
<tr>
<td>Programming & Measurement Resolution</td>
<td>0.001V/ms ~ 15V/ms</td>
<td>0.001V/ms ~ 20V/ms</td>
<td>0.001V/ms ~ 20V/ms</td>
<td>0.001V/ms ~ 40V/ms</td>
<td>0.001V/ms ~ 20V/ms</td>
<td>0.001V/ms ~ 20V/ms</td>
</tr>
<tr>
<td>Voltage Slew Rate Range</td>
<td>0.001A/ms ~ 1A/ms, or INF</td>
<td>0.001A/ms ~ 0.1A/ms, or INF</td>
</tr>
<tr>
<td>Current Slew Rate Range</td>
<td>0.001A/ms ~ 0.1A/ms, or INF</td>
</tr>
<tr>
<td>Minimum Transition Time</td>
<td>0.5ms</td>
<td>0.5ms</td>
<td>0.5ms</td>
<td>0.5ms</td>
<td>0.5ms</td>
<td>0.5ms</td>
</tr>
<tr>
<td>Slew Rate Control</td>
<td>10ms (6.66A loading)</td>
<td>30ms</td>
<td>30ms</td>
<td>30ms</td>
<td>25ms</td>
<td>90ms</td>
</tr>
<tr>
<td>Rise Time: 50% F.S. CC Load</td>
<td>10ms</td>
<td>30ms</td>
<td>30ms</td>
<td>30ms</td>
<td>25ms</td>
<td>90ms</td>
</tr>
<tr>
<td>Rise Time: No Load</td>
<td>10ms</td>
<td>30ms</td>
<td>30ms</td>
<td>30ms</td>
<td>25ms</td>
<td>90ms</td>
</tr>
<tr>
<td>Fall Time: 50% F.S. CC Load</td>
<td>10ms</td>
<td>30ms</td>
<td>30ms</td>
<td>30ms</td>
<td>25ms</td>
<td>90ms</td>
</tr>
<tr>
<td>Fall Time: 10% F.S. CC Load</td>
<td>83ms</td>
<td>100ms</td>
<td>100ms</td>
<td>100ms</td>
<td>80ms</td>
<td>625ms</td>
</tr>
<tr>
<td>Fall Time: No Load</td>
<td>300ms</td>
<td>1.2s</td>
<td>1.2s</td>
<td>1.2s</td>
<td>3s</td>
<td>2.5s</td>
</tr>
</tbody>
</table>

Notes

- **Note 1**: Max. Power is 20kW for 62020H-150S.
- **Note 2**: There is parallel mode for DC power supply when the I-V curve function is enabled.
- **Note 3**: For higher power > 288kW, please call for availability.
- **Note 4**: Recovers within 1.5ms to ±1.5% of steady-state output for a 50% to 75% or 75% to 50% load change (0.1A/ms).
- **Note 5**: The high voltage wide-range output design is suitable for 1500V string PV inverter testing.

Graph

- **Graph 1**: Model 62180H-1800S operating region
- **Graph 2**: Voltage vs. Current for different power levels

Additional Information

- **Manual / Auto**: Selects the manual or auto mode for operation.
- **Parallel Operation**: Master / Slave control via CAN for 10 units up to 150kW (Parallel: ten units) up to 288kW.
GENERAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Model</th>
<th>62020H-150S</th>
<th>62050H-600S</th>
<th>62100H-600S</th>
<th>62150H-600S</th>
<th>62150H-1000S</th>
<th>62180H-1800S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote Interface</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog programming</td>
<td>Standard</td>
<td>Standard</td>
<td>Standard</td>
<td>Standard</td>
<td>Optional</td>
<td></td>
</tr>
<tr>
<td>USB</td>
<td>Standard</td>
<td>Standard</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS232</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS485</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPIB</td>
<td>Standard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System bus(CAN)</td>
<td>Standard for master/slave control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethernet</td>
<td>Optional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GPIB Command Response Time

- **Vout setting**: GPIB send command to DC source receiver <20ms
- **Measure V&I**: Under GPIB command using Measure <25ms

Analog Interface (I/O) *

- **Voltage and Current Programming Inputs (I/P)**: 0-10Vdc / 0 ~ 5Vdc / 0~5kohm / 4 ~ 20 mA of F.S.
- **Voltage and Current monitor output (O/P)**: 0 ~ 10Vdc / 0 ~ 5Vdc / 4 ~ 20mA of F.S.
- **External ON/OFF (I/P)**: TTL : Active Low or High (Selective)
- **System Fault indicator(O/P)**: TTL : Active Low
- **Auxiliary power supply(O/P)**: Nominal supply voltage : 12Vdc / Maximum current sink capability : 10mA
- **Safety interlock(I/P)**: Time accuracy: <100ms
- **Remote inhibit(I/P)**: TTL : Active Low

Auto Sequencing (List Mode)

- **Number of program**: 10
- **Number of sequence**: 100
- **Dwell time Range**: 5ms ~ 15000S
- **Trig. Source**: Manual / Auto / External

Auto Sequencing (Step Mode)

- **Start voltage**: 0 to Full scale
- **End voltage**: 0 to Full scale
- **Run time**: 10ms ~ 999hours
- **5ms ~ 15000S
- **1ms ~ 99hours

Input Specification

- **AC Input Volatage 3Phase, 3Wire+Ground**: 1Ø 200~220Vac ± 10% V̇, 3Ø 200~220Vac ± 10% V̇, 3Ø 380~400Vac ± 10% V̇, 3Ø 440~480Vac ± 10% V̇.
- **AC Frequency range**: 47 ~ 63Hz
- **Max Current (each phase)**: 200/220Vac 15.2A, 3Ø 200~220Vac 39A, 3Ø 380~400Vac 69A, 3Ø 440~480Vac 93A.
- **Drop Compensation**: 2% of full scale voltage per line (4% total)
- **Drop Compensation**: 1% of full scale voltage per line (2% total)
- **Operating Temperature Range**: 0°C ~ 40°C
- **Storage Temperature Range**: -40°C ~ +85°C

General Specification

- **Dimension (HxWxD)**: 89x248x465 mm / 3.5x16.85x16.73 inch, 132.8 x 428 x 610 mm / 5.23 x 16.85 x 24.02 inch, 132.8x428x660 mm / 5.23x16.85x25.99 inch
- **Weight**: Approx. 17 kg/37.44 lbs, Approx. 23 kg/55.70 lbs, Approx. 29 kg/63.88 lbs, Approx. 35 kg/77.09 lbs, Approx. 40 kg/88.19 lbs
- **Approval**: CE

All specifications are subject to change without notice.

Note *: None APG interface for A620027/A620028

HEADQUARTERS
CHROMA ATE INC.
66 Huaya 1st Road, Guishan, Taoyuan 33383, Taiwan
T +886-3-327-9999 F +886-3-327-8898
www.chromaate.com info@chromaate.com

U.S.A.
CHROMA SYSTEMS SOLUTIONS, INC.
19772 Pauling, Foothill Ranch, CA 92610
T +1-949-600-6400 F +1-949-600-6411
www.chromausa.com sales@chromausa.com

EUROPE
CHROMA ATE EUROPE B.V.
Morsestraat 32, 6716 AH Ede, The Netherlands
T +31-318-648282 F +31-318-648288
www.chroma.eu salesnl@chroma.eu

CHROMA GERMANY GMBH
Südtiroler Str. 9, 86165, Augsburg, Germany
T +49-821-790967-0 F +49-821-790967-600
www.chromaeu.com salesde@chroma.eu

JAPAN
CHROMA JAPAN CORP.
888 Nippa-cho, Kouhoku-ku, Yokohama-shi, Kanagawa, 223-0057 Japan
T +81-45-542-1118 F +81-45-542-1080
www.chroma.co.jp info@chroma.co.jp

KOREA
CHROMA ATE KOREA BRANCH
3F Richtogether, Center, 14, Bundang-gu, Seongnam-si, Gyeonggi-do 13524, Korea
T +82-31-781-1025 F +82-31-8017-6614
www.chroma.co.kr info@chromaate.com

CHINA
CHROMA ELECTRONICS (SHENZHEN) CO., LTD.
8F, No.4, Nanyou Tian An Industrial Estate, Shenzhen, China
T +86-755-2664-4598 F +86-755-2641-9620
www.chroma.com.cn info@chromaate.com

SOUTH EAST ASIA
QUANTEL PTE LTD.
(Company of Chroma Group)
25 Kallang Avenue #05-02 Singapore 339416
T +65-6745-3200 F +65-6745-9764
www.quantel-global.com sales@quantel-global.com

62000H-S Series E-202003-PDF