Battery Simulator Model A170202

Battery Simulator Model A170202 - from Chroma

Key Features

  • Multichannel battery packs state simulation.
  • Follow the battery cell curve behavior to simulate battery state.
  • Able to set frequently used parameters for battery pack and rapidly customize initial output state.
  • Regenerative battery energy discharge function, power saving, environment-friendly and low heat output with 85% efficiency.
  • Up to 60 channels can be paralleled for large current request.
  • Operating mode: Constant Current/Constant Voltage/Constant Power discharge
    – 600W, 1.25kW, 2.5kW, 5kW,10kW, 20kW, 30kW, 50kW, 60kW power per channel
    – 20V, 60V, 100V, 200V and 500V voltage modules
    – 2600A maximum current (paralleled)
  • Dynamic current charge and discharge simulation.
  • Highly accurate current and voltage measurement.
  • Smooth and rapid current charge and discharge switching without interruption.
  • Current smooth without surge when altering charge and discharge mode (CC-CV-CP).
  • Independent channel protection function.


Testing battery connected devices with an actual battery can either be cost or time prohibitive especially if multiple channels are required. Our Battery Simulation software is used to validate device functions during development in lieu of an actual battery or batteries. Automotive applications include motor drivers, OBC, DC-DC convertors or chargers, and products of DC bus.

Car system

Car system

CSS system structure (Standalone – DC bus)


 How to select the battery simulator or DC power supply and DC load integrated solution? 

The integrated solution of DC power supply and DC load can also form a battery simulator; however, the difference between it and the bidirectional power supply is if there is delay during conversion. It is suggested to use the 17020 to test the bidirectional products, and use the 17020 or DC power supply and DC load integrated solution for testing the unidirectional products.

17020 DC Source/DC Load
Power Rating >20kW <20kW
Voltage Rating 20V, 60V, 100V, 200V, 500V Source:30V, 40V, 80V, 100V, 300V, 450V, 600V,1000V
Load:150V, 600V, 1200V
V Ripple Noise (rms) <1%FS (Base on Voltage range) 8mV~1500mV (Base on Voltage range)
I Ripple Noise (rms) <1%FS (Base on Current range) 10 mA~270mA (Base on Current range)
Interrupt during current transition W/O Interrupt Interrupt
during charge / discharge switch
Battery Simulator Software Ready by Chroma Create by user
Multi-UUT Max 8 channels / Min 1 Channels 1 Channels
Dual-Output 2 DC output per-channel 1 DC output per-channel


 Common battery simulation requirements 

Voltage curve affected by the battery pack internal resistance

The main task of the battery pack is to provide energy to the developed product. Since the battery energy is a kind of chemical energy that needs to be charged to restore its capacity, charging and discharging the battery back is required. When the charge and discharge current is added to the battery pack, its voltage will change instantly in a short time due to the impact of battery pack internal resistance.


Relationship between battery pack voltage and SOC (State of Charge)

The battery pack uses SOC to define the battery capacity state. Since the battery capacity is associated with the battery pack output voltage, and the working range of input DC voltage has to be clearly defined in the specification when designing a product, the battery pack output voltage and the battery capacity usage are closely related.


Battery pack operating voltage, full charge and discharge voltage, and protection voltage

The product defines the battery pack used area based on its application, for instance, the pure electric car defines the battery SOC to be 0~90% while the HEV defines the SOC to be 20~70%. Since the lithium battery pack is dangerous, over and under voltage (OVP, UVP) will be managed by the battery management system. The common battery usage management includes overcharge voltage, over discharge voltage, upper limit operating voltage, lower limit operating voltage, full charge voltage and full discharge voltage total six items.


Battery simulator software:

Chroma provides multichannel battery simulator and bidirectional DC power supply control panel for users to easily simulate the battery functions.

Battery simulator parameter real time monitor

  • Software equipped with multichannel status control
  • Real time test results reading including voltage, current, power, SOC%, charge/discharge state and capacity

Common battery parameters setting and functions simulation

The software is capable of loading 4 battery cell curves to simulate the battery cell status under room temperature, high temperature and low temperature.

  • Curves to load: Oblique line, voltage vs. SOC curve, voltage vs. capacity curve
  • Real time setting for battery capacity and internal resistance
  • Offset setting for charge and discharge curve

Curves to Load, Real time setting, offset setting


Common parameters setting for battery module

  • Change battery cell parameters to battery module via simple settings

  • Battery pack configuration : Connect battery cells in series or parallel to become a battery module.

Battery Cell - Battery Pack

  • Battery pack internal resistance : Total battery internal resistance = battery pack resistance + other resistance (PCBA + wire…etc.)

Battery Pack

  • Battery operating/protection: SOC 100%~0%、OVP/UVP and SOC 80%~20% of working range settings

Initial output state setting

Using the software to set the initial output state and simulate the required battery state as desired to full charge or SOC 50% rapidly without waiting for charge/discharge as the actual battery pack does.

  • Initial output state : OCV, SOC% and capacity.
  • Efficiency(%): The results of the software calculation are based on the charge and discharge efficiency.
  • Pre-charge voltage simulation : It simulates the battery voltage rise status when the battery pack is enabled.

Initial output state setting


Initial output state setting

It generates the actual battery constant current to constant voltage charge and constant current discharge state.

Initial output state setting

Model Description
A170202 Battery Simulation Software

User’s Manual

    How To Buy

    Three efficient ways to get pricing and/or more information regarding this instrument:

    Electronically: Please complete this form and one of our sales engineers will respond same day or next business day if after hours. Requests from this form are quoted directly from Chroma.

    By phone: Call us at 949-600-6400, let the operator know where you are located, and you’ll be routed to your regional sales engineer.

    By chat: Feel free to use the Chat line located at the bottom right of this page. The chat operator will take your information and route it to your regional sales engineer.


    Want a quote for multiple instrument types? If you would like a quote for multiple instrument types, please use this form.


    Lead time

    Most of our instruments are inventoried and ready to ship. If we are currently out of stock – and due to demand we can be - lead times are typically 4-8 weeks depending on the instrument’s power rating.
















    Contact Information

    Required fields marked with *

    Your Name *

    Company *

    Country *

    Email *

    Phone *

    State or Province *


    Maximum Output Voltage:

    Optional Solar Array Simulation:

    Maximum Output Current:

    Maximum Output Power:

    Additional Requirements or Comments:

    Check below