Latest News

Technical Webinar: Testing PV Inverters and Solar Energy System Devices [VIDEO]

A photovoltaic or PV inverter, converts the direct current (DC) output of a solar cell or array into an alternating current (AC) that can be fed directly into the electrical grid (Grid Tie), used by a local electrical grid (Off-Grid), or both (Hybrid Inverters). The PV Inverter is a key component in a photovoltaic system, allowing the use of household and commercial AC powered devices. Solar PV inverters have special functions adapted for use with photovoltaic arrays, including maximum power point tracking (MPPT) and anti-islanding protection.
Our test instrumentation provides means to further the development, reliability, and validation of grid-tied, off-grid, and hybrid solar PV inverters that will eventually be used in commercial and household applications for years to come. We do this by integrating features into our testers that, for example, allow performance testing of inverter behavior during voltage and frequency fluctuations found on the grid. And we can do this either by standalone instrumentation or integrated into an automated test system.

This seminar will focus on functional testing of the PV inverter and highlight solar panel/array and energy storage systems test.

More Recent Posts

Chroma Bidirectional Power Supply: Fuel Cell Power System Use Case

Chroma 62180D-1200 Bidirectional DC Power Supplies support paralleling up to 30 units for an output power of 540kW and an output current of 1200A. This meets the requirements of today’s fuel cell engine assemblies, enabling the instruments to function as a highly efficient fuel cell simulator with energy recycling functionality.

Read More »

Chroma’s Ultra-High Precision Measurement Solution: Improving the Efficiency of Non-Invasive Degradation Analysis of Lithium-Ion Battery Cells

Chroma’s newest entry in its 17010 Series, Model 17208M-5-12C, is an ultra-high precision charge-discharge tester specifically built for this application. With measurement precision reaching up to <±0.001% of F.S., this system provides a highly accurate and efficient solution for battery degradation assessment.

Read More »